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Introduction

• To evaluate an IR system is to measure how well the system 
meets the information needs of the users
– This is troublesome, given that a same result set might be 

interpreted differently by distinct users

• Without proper retrieval evaluation, one cannot
– determine how well the IR system is performing

– objectively compare the performance of the IR system with that 
of other systems
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Notations

• For a given query (information need)
– 𝐃: the set of documents

– 𝑅: the set of relevant documents
– 𝐴: the answer set generated by an IR system

– 𝑅 ∩ 𝐴: relevant documents in the answer set

R AR∩A

D
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Precision & Recall – Definition

• Precision (準確率) is the fraction of the retrieved documents 
which is relevant

• Recall (召回率) is the fraction of the relevant documents 
which has been retrieved

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅 ∩ 𝐴|

|𝑅|

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑅 ∩ 𝐴|

|𝐴|

R 
(relevant documents)

A
(answer set)

R∩A

D
(documents)
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Precision & Recall

• The definition of precision and recall assumes that all 
documents in the answer set have been examined

• In reality, user sees a ranked set of documents and examines 
them starting from the top
– Precision and recall vary as the user proceeds with their 

examination of the answer set

• Most appropriate then is to plot a curve of precision versus 
recall
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Example – 1.

• For a given query 𝑞 and a set of relevant documents 𝑅𝑞 for 
the query

• If an IR model that provides a ranking list for the query 𝑞

𝑅𝑞 = {𝑑3, 𝑑5, 𝑑9, 𝑑25, 𝑑39, 𝑑44, 𝑑56, 𝑑71, 𝑑89, 𝑑123}

1. 𝑑123 6. 𝑑9 11. 𝑑38

2. 𝑑84 7. 𝑑511 12. 𝑑48

3. 𝑑56 8. 𝑑129 13. 𝑑250

4. 𝑑6 9. 𝑑187 14. 𝑑113

5. 𝑑8 10. 𝑑25 15. 𝑑3
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Example – 1..

• If we examine this ranking, we observe that
– The document 𝑑123, ranked as number 1, is relevant

• This document corresponds to 10% of all relevant documents

• Thus, we say that we have a precision of 100% at 10% recall

– The document 𝑑56, ranked as number 3, is the next relevant
• At this point, two documents out of three are relevant, and two of 

the ten relevant documents have been seen

• Thus, we say that we have a precision of 66.6% at 20% recall

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

R(%) 10 20 30 40 50

P(%) 100 66.6 50 40 33.3

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅 ∩ 𝐴|

|𝑅|

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑅 ∩ 𝐴|

|𝐴|
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Example – 2.

• For a given query 𝑞 and a set of relevant documents 𝑅𝑞 for 
the query

• If an IR model that provides a ranking list for the query 𝑞

𝑅𝑞 = {𝑑3, 𝑑56, 𝑑129}

1. 𝑑123 6. 𝑑9 11. 𝑑38

2. 𝑑84 7. 𝑑511 12. 𝑑48

3. 𝑑56 8. 𝑑129 13. 𝑑250

4. 𝑑6 9. 𝑑187 14. 𝑑113

5. 𝑑8 10. 𝑑25 15. 𝑑3
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Example – 2..

• If we examine this ranking, we observe that
– The first relevant document is 𝑑56

• It provides a recall and precision levels equal to 33.3%

– The second relevant document is 𝑑129
• It provides a recall level of 66.6% (with precision equal to 25%)

– The third relevant document is 𝑑3
• It provides a recall level of 100% (with precision equal to 20%)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

R(%) 33.3 66.6 100

P(%) 33.3 25 20

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅 ∩ 𝐴|

|𝑅|
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

|𝑅 ∩ 𝐴|

|𝐴|
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Interpolated Precision.

• An interpolated precision at a standard 11 recall level can 
be calculated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

R(%) 33.3 66.6 100

P(%) 33.3 25 20

R 0 10 20 30 40 50 60 70 80 90 100

P

𝑅, 𝑃 = (33.3%, 33.3%) 𝑅, 𝑃 = (66.6%, 25%) 𝑅, 𝑃 = (100%, 20%)
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Interpolated Precision..

• An interpolated precision at a standard 11 recall level can 
be calculated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

R(%) 33.3 66.6 100

P(%) 33.3 25 20

ത𝑃 𝑟 = 𝑚𝑎𝑥𝑟′≥𝑟𝑃(𝑟
′)

R 0 10 20 30 40 50 60 70 80 90 100

P 33.3 33.3 33.3 33.3

𝑅, 𝑃 = (33.3%, 33.3%) 𝑅, 𝑃 = (66.6%, 25%) 𝑅, 𝑃 = (100%, 20%)

ത𝑃 0 = 𝑚𝑎𝑥𝑟′≥0𝑃 𝑟′ = 𝑃 33.3 = 33.3%

ത𝑃 20 = 𝑚𝑎𝑥𝑟′≥20𝑃 𝑟′ = 𝑃 33.3 = 33.3%
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Interpolated Precision…

• An interpolated precision at a standard 11 recall level can 
be calculated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

R(%) 33.3 66.6 100

P(%) 33.3 25 20

ത𝑃 𝑟 = 𝑚𝑎𝑥𝑟′≥𝑟𝑃(𝑟
′)

R 0 10 20 30 40 50 60 70 80 90 100

P 33.3 33.3 33.3 33.3 25 25 25

𝑅, 𝑃 = (33.3%, 33.3%) 𝑅, 𝑃 = (66.6%, 25%) 𝑅, 𝑃 = (100%, 20%)

ത𝑃 40 = 𝑚𝑎𝑥𝑟′≥40𝑃 𝑟′ = 𝑃 66.6 = 25%
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Interpolated Precision….

• An interpolated precision at a standard 11 recall level can 
be calculated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

R(%) 33.3 66.6 100

P(%) 33.3 25 20

ത𝑃 𝑟 = 𝑚𝑎𝑥𝑟′≥𝑟𝑃(𝑟
′)

R 0 10 20 30 40 50 60 70 80 90 100

P 33.3 33.3 33.3 33.3 25 25 25 20 20 20 20

𝑅, 𝑃 = (33.3%, 33.3%) 𝑅, 𝑃 = (66.6%, 25%) 𝑅, 𝑃 = (100%, 20%)

ത𝑃 70 = 𝑚𝑎𝑥𝑟′≥70𝑃 𝑟′ = 𝑃 100 = 20%
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Interpolated Recall-Precision Curve

• Based on the interpolated precision, an interpolated recall-
precision curve can be illustrated

R 0 10 20 30 40 50 60 70 80 90 100

P 33.3 33.3 33.3 33.3 25 25 25 20 20 20 20
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Average Recall-Precision Curve – 1 

• Usually, retrieval algorithms are evaluated by running them 
for several distinct test queries

• To evaluate the retrieval performance for |𝐐| queries, we 
average the precision at each recall level as follows

– ത𝑃′ 𝑟 is the average precision at the recall level 𝑟

– ത𝑃𝑖 𝑟 is the precision at recall level 𝑟 for the 𝑖-th query

ത𝑃′ 𝑟 =෍

𝑖=1

|𝐐|
ത𝑃𝑖 𝑟

|𝐐|

R 0 10 20 30 40 50 60 70 80 90 100

𝑞1 P 33.3 33.3 33.3 33.3 25 25 25 20 20 20 20

𝑞2 P 50 50 50 40 30 30 30 20 20 20 10

Avg. 41.65 41.65 41.65 36.65 27.5 27.5 27.5 20 20 20 15
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Average Recall-Precision Curve – 2

• Average precision-recall curves are normally used to compare 
the performance of distinct IR algorithms

• The figure below illustrates average precision-recall curves 
for two distinct retrieval algorithms
– Difficult to figure out that which system is better!
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Recall-Precision Curve

• Trade-off between recall and precision

Precision

Recall

100%

100%

Return most relevant documents but 

miss many useful ones at the same time

The Ideal case

Return all relevant documents but 

include lots of non-relevant ones

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅 ∩ 𝐴|

|𝑅|

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑅 ∩ 𝐴|

|𝐴|
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Pros and Cons

• Advantages
– Simple, intuitive, and combined in single curve

– Provide quantitative evaluation of the answer set and 
comparison among retrieval algorithms

– A standard evaluation strategy for IR systems

• Disadvantages
– The estimation of recall score for a query requires detailed 

knowledge of all the documents in the collection
– For systems which require a weak ordering though, recall and 

precision might be inadequate

𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅 ∩ 𝐴|

|𝑅|

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑅 ∩ 𝐴|

|𝐴|
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Single Value Summaries – Precision@K

• Precision@𝐾

– A single value summary measure the precision when first 𝐾
retrieved documents have been seen

– It favors systems which retrieve relevant docs quickly
• In the case of Web search engines, the majority of searches does 

not require high recall

• Higher the number of relevant documents at the top of the 
ranking, more positive is the impression of the users

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

P(%) 100 66.6 50 40 33.3

𝑃@15 =
5

15
= 0.33𝑃@5 =

2

5
= 0.4
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Single Value Summaries – R-Precision

• 𝑅 is the total number of relevant documents for a given query

• 𝑅-Precision is to compute the precision at the 𝑅-th position in 
the ranking list

– For the first query: 𝑅 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
2

5
= 40%

– For the second query: 𝑅 − 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

3
= 33.3%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

P(%) 100 66.6 50 40 33.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑84 𝑑56 𝑑123 𝑑129 𝑑8 𝑑6 𝑑511 𝑑9 𝑑187 𝑑3 𝑑48 𝑑38 𝑑25 𝑑113 𝑑250

P(%) 33.3 33.3 30
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Single Value Summaries – Precision Histograms

• 𝑅-Precision can be used to compare two algorithms
– A visual inspection

– For each query, the difference of 𝑅-Precision for two algorithms 
(A and B) can be computed
• 𝑅𝑃𝐴(𝑖): R-precision for algorithm A for the 𝑖-th query

• 𝑅𝑃𝐵(𝑖): R-precision for algorithm B for the 𝑖-th query

𝑅𝑃𝐴/𝐵 𝑖 = 𝑅𝑃𝐴 𝑖 − 𝑅𝑃𝐵 𝑖
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Single Value Summaries – MAP.

• Precision@K and R-Precision give scores for queries 
individually
– They are still hard to compare the performance between 

systems!

• Mean Average Precision (MAP)
– The idea here is to average the precision figures obtained after 

each new relevant document is observed
• Averaged at relevant documents and across queries

• Widely used in IR performance evaluation

𝑀𝐴𝑃 =
1

|𝐐|
෍

𝑞∈𝐐

𝑀𝐴𝑃𝑞
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Single Value Summaries – MAP..

– For example (MAP):
• the ranking model returns fifteen documents for each query

• the first query has five relevant documents {𝑑123, 𝑑56, 𝑑9, 𝑑25, 𝑑3}

• the second query has three relevant documents {𝑑123, 𝑑6, 𝑑3}

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

P(%) 100 66.6 50 40 33.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑84 𝑑56 𝑑123 𝑑129 𝑑8 𝑑6 𝑑511 𝑑9 𝑑187 𝑑3 𝑑48 𝑑38 𝑑25 𝑑113 𝑑250

P(%) 33.3 33.3 30

𝑀𝐴𝑃 =
1

2
×

1.0 + 0.66 + 0.5 + 0.4 + 0.33

5
+
0.33 + 0.33 + 0.30

3
= 0.449

Average Precision

𝑀𝐴𝑃 =
1

|𝐐|
෍

𝑞∈𝐐

𝑀𝐴𝑃𝑞
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Single Value Summaries – MAP...

– For example (MAP):
• the ranking model returns eight documents for each query

• the first query has five relevant documents {𝑑123, 𝑑56, 𝑑9, 𝑑25, 𝑑3}

• the second query has three relevant documents {𝑑123, 𝑑6, 𝑑3}

1 2 3 4 5 6 7 8

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129

P(%) 100 66.6 50

1 2 3 4 5 6 7 8

𝑑84 𝑑56 𝑑123 𝑑129 𝑑8 𝑑6 𝑑511 𝑑9

P(%) 33.3 33.3

𝑀𝐴𝑃 =
1

2
×

1.0 + 0.66 + 0.5 + 0.0 + 0.0

5
+
0.33 + 0.33 + 0.00

3
= 0.326

Average Precision

𝑀𝐴𝑃 =
1

|𝐐|
෍

𝑞∈𝐐

𝑀𝐴𝑃𝑞
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Single Value Summaries – MRR

• Mean Reciprocal Rank is a good metric for those cases in 
which we are interested in the first correct answer
– Question-Answering (QA) systems
– Search engine queries that look for specific sites

• URL queries

• Homepage queries

– It can be treated as a combination of Precision@K and R-
Precision

• The position of the first relevant document + a position 
constrain!

𝑀𝑅𝑅𝑖 𝑞 = ቐ
1

𝑟𝑎𝑛𝑘
, 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 < 𝑖

0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑀𝑅𝑅𝑖 𝐐 =
1

|𝐐|
෍

𝑞∈𝐐

𝑀𝑅𝑅𝑖 𝑞
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Single Value Summaries – MRR

• For the first query

• For the second query

• For the third query

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑123 𝑑84 𝑑56 𝑑6 𝑑8 𝑑9 𝑑511 𝑑129 𝑑187 𝑑25 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑84 𝑑56 𝑑123 𝑑129 𝑑8 𝑑6 𝑑511 𝑑9 𝑑187 𝑑3 𝑑48 𝑑38 𝑑25 𝑑113 𝑑250

𝑀𝑅𝑅5 𝐐 =
1

3
× (

1

1
+ 0 +

1

3
) =

4

9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

𝑑511 𝑑8 𝑑6 𝑑56 𝑑84 𝑑9 𝑑123 𝑑25 𝑑129 𝑑187 𝑑38 𝑑48 𝑑250 𝑑113 𝑑3
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Single Value Summaries – F-Measure

• F-Measure combines recall and precision
– Harmonic Mean (調和平均)

– 𝑅(𝑖) is the recall at the 𝑖-th position in the ranking

– 𝑃(𝑖) is the precision at the 𝑖-th position in the ranking

• Properties
– 0 ≤ 𝐹 𝑖 ≤ 1

– 𝐹 𝑖 = 0: no relevant documents were retrieved

– 𝐹 𝑖 = 1: all ranked documents are relevant
– A high 𝐹 𝑖 achieved when both recall and precision are high

𝐹 𝑖 =
2

1
𝑅 𝑖

+
1

𝑃 𝑖

=
2 × 𝑃 𝑖 × 𝑅(𝑖)

𝑃 𝑖 + 𝑅(𝑖)
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Single Value Summaries – E-Measure

• E-Measure combines recall and precision
– It allows the user to specify whether he is more interested in 

recall or precision

– 𝐸(𝑖) is the E-Measure at the 𝑖-th position in the ranking
– 𝑅(𝑖) is the recall at the 𝑖-th position in the ranking
– 𝑃(𝑖) is the precision at the 𝑖-th position in the ranking

– 𝑏 ≥ 0 is a user specified parameter
• 𝑏 = 0 ⇒ 𝐸 𝑖 = 1 − 𝑃(𝑖)

• 𝑏 → ∞ ⇒ 𝑙𝑖𝑚𝑏→∞𝐸 𝑖 = 1 − 𝑅(𝑖)

• 𝑏 = 1 ⇒ 𝐸 𝑖 = 1 −
2×𝑃 𝑖 ×𝑅(𝑖)

𝑃 𝑖 +𝑅(𝑖)

𝐸 𝑖 = 1 −
1 + 𝑏2

𝑏2

𝑅 𝑖
+

1
𝑃 𝑖

= 1 −
(1 + 𝑏2) × 𝑃 𝑖 × 𝑅(𝑖)

𝑏2 × 𝑃 𝑖 + 𝑅(𝑖)

F-Measure
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User-Oriented Measures

• Recall and precision assume that the set of relevant
documents for a query is independent of the users

• However, different users might have different relevance 
interpretations

• User-oriented measures have been proposed
– Coverage ratio 

– Novelty ratio  
– Relative recall 

– Recall effort
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User-Oriented Measures – Notations

• For a given query (information need)
– 𝐃: the set of documents

– 𝑅: the set of relevant documents
– 𝐴: the answer set generated by an IR system

– 𝐾: the set of documents known to the user
• 𝑅 ∩ 𝐴 ∩ 𝐾: the set of relevant documents that have been retrieved 

and are known to the user

• (𝑅 ∩ 𝐴) − 𝐾: the set of relevant documents that have been 
retrieved but are not known to the user

R A

D

K

(𝑅 ∩ 𝐴) − 𝐾

𝑅 ∩ 𝐴 ∩ 𝐾
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User-Oriented Measures.

• The coverage ratio is the fraction of the documents known 
and relevant that are in the answer set

• The novelty ratio is the fraction of the relevant documents 
in the answer set that are not known to the user

𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =
|𝑅 ∩ 𝐴 ∩ 𝐾|

|𝑅 ∩ 𝐾|

𝑁𝑜𝑣𝑒𝑙𝑡𝑦 =
| 𝑅 ∩ 𝐴 − 𝐾|

|𝑅 ∩ 𝐴|

R A

D

K

(𝑅 ∩ 𝐴) − 𝐾

𝑅 ∩ 𝐴 ∩ 𝐾
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User-Oriented Measures..

• The relative recall is the ratio between the number of 
relevant docs found by the system and the number of relevant 
documents known to the user

• The recall effort is the ratio between the number of relevant 
documents known to the user and the number of documents 
found by the system

R A

D

K

(𝑅 ∩ 𝐴) − 𝐾

𝑅 ∩ 𝐴 ∩ 𝐾

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑅 ∩ 𝐴|

|𝑅 ∩ 𝐾|

𝑅𝑒𝑐𝑎𝑙𝑙 𝐸𝑓𝑓𝑜𝑟𝑡 =
|𝑅 ∩ 𝐾|

|𝐴|
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Discounted Cumulated Gain (DCG)

• Precision and recall allow only binary relevance assessments
– No distinction between highly relevant documents and mildly 

relevant documents

• These limitations can be overcome by adopting graded 
relevance assessments and metrics that combine them

• The discounted cumulated gain (DCG) is a metric that 
combines graded relevance assessments effectively
– highly relevant documents are preferable at the top of the 

ranking than mildly relevant ones
– relevant documents that appear at the end of the ranking are 

less valuable
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DCG – 1

• Consider that the results of the queries are graded on a scale 
0–3 
– 0 for non-relevant, 3 for strong relevant docs

• For instance
– For queries 𝑞1 and 𝑞2, consider that the graded relevance scores 

are as follows:

• For query 𝑞1, document 𝑑3 is highly relevant and document 𝑑56 is 
just mildly relevant

𝑅𝑞1 = { 𝑑3, 3 , 𝑑5, 3 , 𝑑9, 3 , 𝑑25, 2 , 𝑑39, 2 ,

𝑑44, 2 , 𝑑56, 1 , 𝑑71, 1 , 𝑑89, 1 , 𝑑123, 1 }

𝑅𝑞2 = { 𝑑3, 3 , 𝑑56, 2 , 𝑑129, 1 }
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DCG – 2

• For a ranking algorithm, top 15 documents are generated for 
both queries

• The gain vectors for the two queries are

𝐺𝑞1 = {1,0,1,0,0,3,0,0,0,2,0,0,0,0,3}

𝐴𝑞1 = {𝑑71, 𝑑2, 𝑑56, 𝑑3, 𝑑4, 𝑑9, 𝑑11, 𝑑12, 𝑑13, 𝑑25, 𝑑21, 𝑑22, 𝑑23, 𝑑24, 𝑑5}

𝐴𝑞2 = {𝑑71, 𝑑2, 𝑑56, 𝑑5, 𝑑4, 𝑑9, 𝑑11, 𝑑129, 𝑑13, 𝑑25, 𝑑21, 𝑑22, 𝑑23, 𝑑24, 𝑑3}

𝐺𝑞2 = {0,0,2,0,0,0,0,1,0,0,0,0,0,0,3}

𝑅𝑞1 = { 𝑑3, 3 , 𝑑5, 3 , 𝑑9, 3 , 𝑑25, 2 , 𝑑39, 2 ,

𝑑44, 2 , 𝑑56, 1 , 𝑑71, 1 , 𝑑89, 1 , 𝑑123, 1 }

𝑅𝑞2 = { 𝑑3, 3 , 𝑑56, 2 , 𝑑129, 1 }
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DCG – 3

• The cumulated gain vectors can then be obtained

– For the first query

– For the second query

𝐶𝐺𝑞1 = {1, 1, 2, 2, 2, 5, 5, 5, 5, 7, 7, 7, 7, 7, 10}

𝐶𝐺𝑞2 = {0, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 6}

𝐶𝐺 [𝑖] = ቊ
𝐺 1 , 𝑖𝑓 𝑖 = 1

𝐺 𝑖 + 𝐶𝐺 𝑖 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝐺𝑞1 = {1, 0, 1, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3}

𝐺𝑞2 = {0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3}
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DCG – 4

• Let’s introduce a discount factor that reduces the impact of 
the gain as we move upper in the ranking
– A simple discount factor is the logarithm of the ranking 

position

– If we consider logs in base 2
• For position 2, the discounting factor is 𝑙𝑜𝑔22

• For position 3, the discounting factor is 𝑙𝑜𝑔23

• The discounted cumulated gain vectors can be obtained

𝐷𝐶𝐺 [𝑖] = ൞

𝐺 1 , 𝑖𝑓 𝑖 = 1

𝐺 𝑖

𝑙𝑜𝑔2(𝑖)
+ 𝐷𝐶𝐺 𝑖 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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DCG – 5.

– For the first query

– For the second query

𝐷𝐶𝐺𝑞1 = {1, 1, 1.6, 1.6, 1.6, 2.8, 2.8, 2.8, 2.8, 3.4, 3.4, 3.4, 3.4, 3.4, 4.2}

𝐷𝐶𝐺𝑞2 = {0, 0, 1.3, 1.3, 1.3, 1.3, 1.3, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 2.4}

𝐺𝑞1 = {1, 0, 1, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3}

𝐺𝑞2 = {0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3}

𝐷𝐶𝐺 [𝑖] = ൞

𝐺 1 , 𝑖𝑓 𝑖 = 1

𝐺 𝑖

𝑙𝑜𝑔2(𝑖)
+ 𝐷𝐶𝐺 𝑖 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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DCG – 5..

– For the first query

– For the second query

𝐷𝐶𝐺𝑞1 = {1, 1, 1.6, 1.6, 1.6, 2.8, 2.8, 2.8, 2.8, 3.4, 3.4, 3.4, 3.4, 3.4, 4.2}

𝐷𝐶𝐺𝑞2 = {0, 0, 1.3, 1.3, 1.3, 1.3, 1.3, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 2.4}

𝐺𝑞1 = {1, 0, 1, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3}

𝐺𝑞2 = {0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3}

𝐷𝐶𝐺 [𝑖] = ൞

𝐺 1 , 𝑖𝑓 𝑖 = 1

𝐺 𝑖

𝑙𝑜𝑔2(𝑖)
+ 𝐷𝐶𝐺 𝑖 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0

𝑙𝑜𝑔22
+ 1
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DCG – 5…

– For the first query

– For the second query

𝐷𝐶𝐺𝑞1 = {1, 1, 1.6, 1.6, 1.6, 2.8, 2.8, 2.8, 2.8, 3.4, 3.4, 3.4, 3.4, 3.4, 4.2}

𝐷𝐶𝐺𝑞2 = {0, 0, 1.3, 1.3, 1.3, 1.3, 1.3, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 2.4}

𝐺𝑞1 = {1, 0, 1, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3}

𝐺𝑞2 = {0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3}

𝐷𝐶𝐺 [𝑖] = ൞

𝐺 1 , 𝑖𝑓 𝑖 = 1

𝐺 𝑖

𝑙𝑜𝑔2(𝑖)
+ 𝐷𝐶𝐺 𝑖 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1

𝑙𝑜𝑔23
+ 1
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DCG – 5….

– For the first query

– For the second query

𝐷𝐶𝐺𝑞1 = {1, 1, 1.6, 1.6, 1.6, 2.8, 2.8, 2.8, 2.8, 3.4, 3.4, 3.4, 3.4, 3.4, 4.2}

𝐷𝐶𝐺𝑞2 = {0, 0, 1.3, 1.3, 1.3, 1.3, 1.3, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 2.4}

𝐺𝑞1 = {1, 0, 1, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3}

𝐺𝑞2 = {0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3}

𝐷𝐶𝐺 [𝑖] = ൞

𝐺 1 , 𝑖𝑓 𝑖 = 1

𝐺 𝑖

𝑙𝑜𝑔2(𝑖)
+ 𝐷𝐶𝐺 𝑖 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

0

𝑙𝑜𝑔24
+ 1.6
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DCG – 5…..

– For the first query

– For the second query

𝐷𝐶𝐺𝑞1 = {1, 1, 1.6, 1.6, 1.6, 2.8, 2.8, 2.8, 2.8, 3.4, 3.4, 3.4, 3.4, 3.4, 4.2}

𝐷𝐶𝐺𝑞2 = {0, 0, 1.3, 1.3, 1.3, 1.3, 1.3, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 2.4}

𝐺𝑞1 = {1, 0, 1, 0, 0, 3, 0, 0, 0, 2, 0, 0, 0, 0, 3}

𝐺𝑞2 = {0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 3}

𝐷𝐶𝐺 [𝑖] = ൞

𝐺 1 , 𝑖𝑓 𝑖 = 1

𝐺 𝑖

𝑙𝑜𝑔2(𝑖)
+ 𝐷𝐶𝐺 𝑖 − 1 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3

𝑙𝑜𝑔26
+ 1.6
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CG vs. DCG

• Discounted cumulated gains are much less affected by 
relevant documents at the end of the ranking

𝐷𝐶𝐺𝑞1 = {1, 1, 1.6, 1.6, 1.6, 2.8, 2.8, 2.8, 2.8, 3.4, 3.4, 3.4, 3.4, 3.4, 4.2}

𝐷𝐶𝐺𝑞2 = {0, 0, 1.3, 1.3, 1.3, 1.3, 1.3, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 2.4}

𝐶𝐺𝑞1 = {1, 1, 2, 2, 2, 5, 5, 5, 5, 7, 7, 7, 7, 7, 10}

𝐶𝐺𝑞2 = {0, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 6}
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CG & DCG Curves – 1

• To produce CG and DCG curves over a set of test queries, we 
need to average them over all queries

• Given a set of queries 𝐐, average 𝐶𝐺[𝑖] and 𝐷𝐶𝐺[𝑖] over all 
queries are computed as follows

𝐷𝐶𝐺 𝑖 = ෍

𝑞∈𝐐

𝐷𝐶𝐺𝑞[𝑖]

|𝐐|

𝐶𝐺 𝑖 = ෍

𝑞∈𝐐

𝐶𝐺𝑞[𝑖]

|𝐐|

𝐷𝐶𝐺𝑞1 = {1, 1, 1.6, 1.6, 1.6, 2.8, 2.8, 2.8, 2.8, 3.4, 3.4, 3.4, 3.4, 3.4, 4.2}

𝐷𝐶𝐺𝑞2 = {0, 0, 1.3, 1.3, 1.3, 1.3, 1.3, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 2.4}

𝐶𝐺𝑞1 = {1, 1, 2, 2, 2, 5, 5, 5, 5, 7, 7, 7, 7, 7, 10}

𝐶𝐺𝑞2 = {0, 0, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 6}

𝐶𝐺 = {0.5, 0.5, 2.0, 2.0, 2.0, 3.5, 3.5, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 8.0}

𝐷𝐶𝐺 = {0.5, 0.5, 1.5, 1.5, 1.5, 2.1, 2.1, 2.2, 2.2, 2.5, 2.5, 2.5, 2.5, 2.5, 3.3}
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CG & DCG Curves – 2

• Average curves can then be drawn by varying the rank 
positions from 1 to a pre-established threshold
𝐶𝐺 = {0.5, 0.5, 2.0, 2.0, 2.0, 3.5, 3.5, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 8.0}

𝐷𝐶𝐺 = {0.5, 0.5, 1.5, 1.5, 1.5, 2.1, 2.1, 2.2, 2.2, 2.5, 2.5, 2.5, 2.5, 2.5, 3.3}
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Ideal G & CG & DCG – 1

• Since the relevant documents with their graded score for 
queries 𝑞1 and 𝑞2 are:

• The ideal gain vectors are:

• The ideal cumulated gain vectors

𝑅𝑞1 = { 𝑑3, 3 , 𝑑5, 3 , 𝑑9, 3 , 𝑑25, 2 , 𝑑39, 2 ,

𝑑44, 2 , 𝑑56, 1 , 𝑑71, 1 , 𝑑89, 1 , 𝑑123, 1 }

𝑅𝑞2 = { 𝑑3, 3 , 𝑑56, 2 , 𝑑129, 1 }

𝐼𝐺𝑞1 = {3,3,3,2,2,2,1,1,1,1,0,0,0,0,0}

𝐼𝐺𝑞2 = {3,2,1,0,0,0,0,0,0,0,0,0,0,0,0}

𝐼𝐶𝐺𝑞1 = {3,6,9,11,13,15,16,17,18,19,19,19,19,19,19}

𝐼𝐶𝐺𝑞2 = {3,5,6,6,6,6,6,6,6,6,6,6,6,6,6}
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Ideal G & CG & DCG – 2

• Consequently, the ideal discounted cumulated gain vectors

• Further, the average 𝐼𝐶𝐺[𝑖] and 𝐼𝐷𝐶𝐺[𝑖] can also be obtained

• By comparing the average CG and DCG
curves for an algorithm with the average
ideal curves, we gain insight on how 
much room for improvement there is

𝐼𝐷𝐶𝐺𝑞1 = {3.0, 6.0 , 7.9, 8.9, 9.8, 10.5, 10.9, 11.2, 11.5, 11.8, 11.8, 11.8, 11.8, 11.8, 11.8}

𝐼𝐷𝐶𝐺𝑞2 = {3.0, 5.0, 5.6, 5.6, 5.6, 5.6, 5.6, 5.6, 5.6, 5.6, 5.6, 5.6, 5.6, 5.6, 5.6}

𝐼𝐶𝐺 = {3.0, 5.5, 7.5, 8.5, 9.5, 10.5, 11.0, 11.5, 12.0, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5}

𝐼𝐷𝐶𝐺 = {3.0, 5.5, 6.8, 7.3, 7.7, 8.1, 8.3, 8.4, 8.6, 8.7, 8.7, 8.7, 8.7, 8.7, 8.7}

AVG(ICG)

AVG(IDCG)
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Normalized CG & DCG – 1

• Given a set of queries, the normalized CG and DCG can be 
computed by:

• In our example, the NCG and NDCG vectors are:

𝑁𝐶𝐺[𝑖] =
𝐶𝐺[𝑖]

𝐼𝐶𝐺[𝑖]
𝑁𝐷𝐶𝐺[𝑖] =

𝐷𝐶𝐺[𝑖]

𝐼𝐷𝐶𝐺[𝑖]

𝐼𝐶𝐺 = {3.0, 5.5, 7.5, 8.5, 9.5, 10.5, 11.0, 11.5, 12.0, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5}

𝐼𝐷𝐶𝐺 = {3.0, 5.5, 6.8, 7.3, 7.7, 8.1, 8.3, 8.4, 8.6, 8.7, 8.7, 8.7, 8.7, 8.7, 8.7}

𝐶𝐺 = {0.5, 0.5, 2.0, 2.0, 2.0, 3.5, 3.5, 4.0, 4.0, 5.0, 5.0, 5.0, 5.0, 5.0, 8.0}

𝐷𝐶𝐺 = {0.5, 0.5, 1.5, 1.5, 1.5, 2.1, 2.1, 2.2, 2.2, 2.5, 2.5, 2.5, 2.5, 2.5, 3.3}

𝑁𝐶𝐺 = {0.17, 0.09, 0.27, 0.24, 0.21, 0.33, 0.32,
0.35, 0.33, 0.40, 0.40, 0.40, 0.40, 0.40, 0.64}

𝑁𝐷𝐶𝐺 = {0.17, 0.09, 0.21, 0.20, 0.19, 0.25, 0.25,
0.26, 0.26, 0.29, 0.29, 0.29, 0.29, 0.29, 0.38}
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Normalized CG & DCG – 2

• The area under the NCG and NDCG curves represent the 
quality of the ranking algorithm
– Larger the area, better the results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

NCG & NDCG

NCG NDCG



53

Pros & Cons for NDCG

• Advantages
– CG and DCG metrics aim at taking into account multiple level 

relevance assessments
• It can distinguish highly relevant documents from mildly relevant 

ones

– Discounted cumulated gain allows down weighting the impact 
of relevant documents found late in the ranking

• Disadvantages
– The relevance assessments are harder and more time 

consuming to generate
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The TREC Collection

• Text REtrieval Conference (TREC) 
– Established in 1991, co-sponsored by the National Institute of 

Standards and Technology (NIST, 美國國家標準技術研究所) 
and the Defense Advanced Research Projects Agency (DARPA,
國防高等研究計劃署) 

– Evaluation of large scale IR problems 
– The premier annual conference was held at NIST in Nov. 1992

http://trec.nist.gov/
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The Goal of TREC

• To encourage research in information retrieval based on 
large test collections

• To increase communication among industry, academia, 
and government by creating an open forum for the 
exchange of research ideas

• To speed the transfer of technology from research labs 
into commercial products

• To increase the availability of appropriate evaluation 
techniques for use by industry and academia
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TREC Collection

• A TREC collection is composed of three parts:
– the documents

– the example information requests (called topics)
– a set of relevant documents for each example information 

request

• The main TREC collection has been growing steadily over the 
years
– The TREC-3 collection has roughly 2 gigabytes

– The TREC-6 collection has roughly 5.8 gigabytes
– The TREC-15 collection has roughly 426 gigabytes

• 25 million (25,000,000) Web documents
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TREC Document

• An example of a TREC document
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TREC Topic

• An example of an information request is the topic numbered 
168 used in TREC-3

taken as a short query

taken as a long query

describe the criteria for relevance, used by the people 

doing relevance judgments, and not taken as a query
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TREC Judgments – Pooling Method

• The set of relevant documents for each topic is obtained from 
a pool of possible relevant documents
– This pool is created by taking the top K documents (usually, 

K=100) in the rankings generated by various retrieval systems

• The documents in the pool are then shown to human 
assessors who ultimately decide on the relevance of each 
document

• This technique of assessing relevance is called the pooling 
method and is based on two assumptions:
– Vast majority of relevant documents is collected in the 

assembled pool 
– Documents not in the pool were considered to be irrelevant
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Popular Collections

• TREC: http://trec.nist.gov/

• CLEF: http://www.clef-initiative.eu

• NTCIR: http://research.nii.ac.jp/ntcir/index-en.html

• FIRE: http://fire.irsi.res.in/fire/static/resources

• Note that these web sites host the publications, current 
meeting information, and also where to get the test 
collections for use outside of the evaluations 

http://trec.nist.gov/
http://www.clef-initiative.eu/
http://research.nii.ac.jp/ntcir/index-en.html
http://fire.irsi.res.in/fire/static/resources


61

Questions?

kychen@mail.ntust.edu.tw


